Classification of Aquatic Species in Cultivation Ponds via Image Processing and Machine Learning

Authors

Pages Icon

DOI:

https://doi.org/10.63158/IJAIS.v2.i1.9

Keywords:

fish classification, underwater image processing, morphometric features, machine learning, intelligent aquaculture

Abstract

Fish cultivation is a vital economic activity for coastal communities, yet traditional farming methods often face challenges such as environmental instability, feeding inefficiencies, and water pollution. Effective monitoring of underwater environments is essential to improve fish quality and farming efficiency. A crucial part of this process is the accurate classification of fish and non-fish objects. This study proposes a method for underwater classification using morphometric feature extraction and machine learning techniques. The research process involves six main steps: (1) preparation of Region of Interest (ROI) detection data, (2) extraction of morphometric features—length (L) and width (W), (3) feature computation, (4) data partitioning for training and testing, (5) classification using Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN), and (6) evaluation using a confusion matrix. Among all models tested, the Random Forest algorithm yielded the highest accuracy at 93%, with classification results showing True Positive = 349, False Positive = 28, True Negative = 223, and False Negative = 0. The findings highlight RF’s potential for enhancing automated fish monitoring in smart aquaculture systems.

Author Biographies

  • Angga Wahyu Wibowo, Politeknik Negeri Semarang

    Department of Electrical Engineering

  • Pratomo Setiaji, Muria Kudus University

    Department of Information System, Faculty of Engineering

  • Wiwit Agus Triyanto, Muria Kudus University

    Department of Information System, Faculty of Engineering

  • Muhammad Arifin, Muria Kudus University

    Department of Information System, Faculty of Engineering

References

S. Ray, P. Mondal, A. K. Paul, S. Iqbal, U. Atique, M. S. Islam, et al., “Role of shrimp farming in socio economic elevation and professional satisfaction in coastal communities of Southern Bangladesh,” Aquac. Rep., vol. 20, Art. no. 100708, Jun. 2021, doi: 10.1016/j.aqrep.2021.100708.

W. C. Valenti, H. P. Barros, P. Moraes Valenti, G. W. Bueno, R. O. Cavalli, “Aquaculture in Brazil: past, present and future,” Aquac. Rep., vol. 19, Art. no. 100611, Jun. 2021, doi: 10.1016/j.aqrep.2021.100611.

X. Yang, S. Zhang, J. Liu, Q. Gao, S. Dong, C. Zhou, “Deep learning for smart fish farming: applications, opportunities and challenges,” Rev. Aquac., vol. 13, pp. 66–90, 2021.

I. J. Huang, C. C. Hung, S. R. Kuang, Y. N. Chang, K. Y. Huang, C. R. Tsai, et al., “The Prototype of a smart underwater surveillance system for shrimp farming,” in Proc. 2018 IEEE Int. Conf. Adv. Manuf. (ICAM 2018), 2019, pp. 177–180.

Z. Liu, X. Jia, X. Xu, “Study of shrimp recognition methods using smart networks,” Comput. Electron. Agric., vol. 165, 2019, Art. no. (jika ada), [halaman jika tersedia].

A. Triantafyllou, D. C. Tsouros, P. Sarigiannidis, S. Bibi, “An architecture model for smart farming,” in Proc. 15th Annu. Int. Conf. Distrib. Comput. Sens. Syst. (DCOSS 2019), 2019, pp. 385–392.

H. Liu, T. Liu, Y. Gu, P. Li, F. Zhai, H. Huang, et al., “A high density fish school segmentation framework for biomass statistics in a deep sea cage,” Ecol. Inform., vol. 64, Jul. 2021, Art. no. 101367, doi: 10.1016/j.ecoinf.2021.101367.

S. Karim, I. Hussain, A. Hussain, K. Hassan, S. Iqbal, “IoT Based Smart Fish Farming Aquaculture Monitoring System,” Int. J. Emerg. Technol., vol. 12, no. 2, pp. 45–53, 2021.

H. Do, T. Quoc, “Climate change adaptation strategies and shrimp aquaculture: Empirical evidence from the Mekong Delta of Vietnam,” Ecol. Econ., vol. 196, Sep. 2022, Art. no. 107411, doi: 10.1016/j.ecolecon.2022.107411.

J. M. Patel and N. C. Gamit, “A review on feature extraction techniques in content based image retrieval,” in Proc. 2016 Int. Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Chennai, India, 2016, pp. 2259–2263, doi: 10.1109/WiSPNET.2016.7566454.

A. P. Dineshbabu, G. Sasikumar, P. Rohit, S. Thomas, K. M. Rajesh, and P. U. Zacharia, Methodologies for Studying Finfish and Shellfish Biology, CMFRI-NICRA Publ. No. 2, Central Marine Fisheries Research Institute, Kochi, India, 2013, 91 pp.

L. Zhang, J. Wang, Q. Duan, “Estimation for fish mass using image analysis and neural network,” Comput. Electron. Agric., vol. 173, Apr. 2020, Art. no. 105439, doi: 10.1016/j.compag.2020.105439.

D. Mou, Z. Wang, X. Tan, S. Shi, “A variational inequality approach with SVM optimization algorithm for identifying mineral lithology,” J. Appl. Geophys., vol. 204, Dec. 2022, Art. no. 104747, doi: 10.1016/j.jappgeo.2022.104747.

W. Gao, Z. H. Zhou, “Towards convergence rate analysis of random forests for classification,” Adv. Neural Inf. Process. Syst., Dec. 2020, Art. no. 103788, doi: 10.1016/j.artint.2022.103788.

Y. G., P. Krecl, A. Créso, “Fine scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches,” Sci. Total Environ., vol. 815, 2022.

M. Ghane, M. C. Ang, M. Nilashi, S. Sorooshian, “Enhanced decision tree induction using evolutionary techniques for Parkinson’s disease classification,” Biocybern. Biomed. Eng., vol. 42, no. 3, pp. 902–920, 2022, doi: 10.1016/j.bbe.2022.07.002.

L. Spirkovska, “Three dimensional object recognition using similar triangles and decision trees,” Pattern Recognit., vol. 26, no. 5, pp. 727–732, 1993.

S. Wang, T. B. Eldred, J. G. Smith, W. Gao, “Ultramicroscopy AutoDisk: Automated diffraction processing and strain mapping in [full title],” Ultramicroscopy, vol. 236, Mar. 2022, Art. no. 113513, doi: 10.1016/j.ultramic.2022.113513.

S. K. Singla, R. D. Garg, O. P. Dubey, “Ensemble machine learning methods to estimate the sugarcane yield based on remote sensing information,” Rev. d’Intell. Artif., vol. 34, no. 6, pp. 731–743, 2020.

M. G. Uddin, S. Nash, M. Diganta M. T., A. I. Olbert, “Robust machine learning algorithms for predicting coastal water quality index,” J. Environ. Manage., vol. 321, Jul. 2022, Art. no. 115923, doi: 10.1016/j.jenvman.2022.115923.

M. Saberioon and P. Císař, “Automated within tank fish mass estimation using infrared reflection system,” Comput. Electron. Agric., vol. 150, pp. 484–492, May 2018, doi: 10.1016/j.compag.2018.05.025.

I. S. Isa, N. N. Norzrin, S. N. Sulaiman, N. A. Hamzaid, M. I. F. Maruzuki, “CNN Transfer Learning of Shrimp Detection for Underwater Vision System,” in Proc. 1st Int. Conf. Inf. Technol. Adv. Mech. Electr. Eng. (ICITAMEE), 2020, pp. 226–231.

S. Giri, Y. Kang, K. MacDonald, M. Tippett, Z. Qiu, R. G. Lathrop, et al., “Revealing the sources of arsenic in private well water using Random Forest Classification and Regression,” Sci. Total Environ., vol. 857, Oct. 2023, Art. no. 159360, doi: 10.1016/j.scitotenv.2022.159360.

A. Zermane, M. Z. M. Tohir, H. Zermane, M. R. Baharudin, H. Mohamed Yusoff, “Predicting fatal fall from heights accidents using random forest classification machine learning model,” Saf. Sci., vol. 159, Nov. 2023, Art. no. 106023, doi: 10.1016/j.ssci.2022.106023.

Downloads


Pages Icon Abstract View: 59
Pages Icon Download PDF: 49

Published

2025-03-30

Issue

Section

Articles

How to Cite

Classification of Aquatic Species in Cultivation Ponds via Image Processing and Machine Learning. (2025). International Journal of Artificial Intelligence and Science, 2(1), 1-17. https://doi.org/10.63158/IJAIS.v2.i1.9