A Comparative Study of Logistic Regression and Support Vector Machine for COVID-19 Symptom Prediction

DOI:
https://doi.org/10.63158/IJAIS.v1.i1.8Keywords:
covid-19, machine learning, logistic regression, support vector machine, symptom predictionAbstract
The rapid spread of COVID-19 has created a critical need for accurate and efficient tools to predict symptoms and aid in early diagnosis. This study aims to compare the effectiveness of two machine learning models, Logistic Regression and Support Vector Machine (SVM), in predicting COVID-19 symptoms based on patient data. The dataset used contains key COVID-19 symptoms, which were processed and modeled using both techniques. Logistic Regression was evaluated alongside SVM using three different kernels: Linear, Sigmoid, and Radial Basis Function (RBF). The models' performance was measured using the Confusion Matrix to assess accuracy. Logistic Regression achieved an accuracy of 96.78%, while the SVM with the RBF Kernel slightly outperformed it with an accuracy of 96.85%. The SVM with the Sigmoid Kernel performed the least effectively, with an accuracy of 95.19%. These findings suggest that both models are highly effective for symptom prediction, with the RBF Kernel showing the best overall performance in handling complex, non-linear data patterns.
References
F. Ferdiansyah, S. H. Othman, R. Z. R. M. Radzi, D. Stiawan, Y. Sazaki, and U. Ependi, “A LSTM-method for bitcoin price prediction: A case study yahoo finance stock market,” in 2019 Int. Conf. Electr. Eng. Comput. Sci. (ICECOS), IEEE, Oct. 2019, pp. 206-210. doi: 10.1109/ICECOS.2019.8921471.
T. H. Pantjoro, “Pandemi COVID-19, Disrupsi Bonus Demografi dan Ketahanan Nasional,” J. Lemhannas RI, vol. 9, no. 2, pp. 83-100, 2021.
D. Fisher and D. Heymann, “Q&A: The novel coronavirus outbreak causing COVID-19,” BMC Med., vol. 18, pp. 1-3, 2020. doi: 10.1186/s12916-020-01533-w.
S. Anggraini, M. Akbar, A. Wijaya, H. Syaputra, and M. Sobri, “Klasifikasi Gejala Penyakit Coronavirus Disease 19 (COVID-19) Menggunakan Machine Learning,” J. Softw. Eng. Ampera, vol. 2, no. 1, pp. 57-68, 2021.
A. Bimantara and T. A. Dina, “Klasifikasi Web Berbahaya Menggunakan Metode Logistic Regression,” in Annu. Res. Semin. (ARS), vol. 4, no. 1, pp. 173-177, May 2019.
M. D. Purbolaksono, M. I. Tantowi, A. I. Hidayat, and A. Adiwijaya, “Perbandingan support vector machine dan modified balanced random forest dalam deteksi pasien penyakit diabetes,” J. RESTI (Rekayasa Sist. Teknol. Inf.), vol. 5, no. 2, pp. 393-399, 2021. doi: 10.29207/resti.v5i2.2235.
A. Dairi, F. Harrou, A. Zeroual, M. M. Hittawe, and Y. Sun, "Comparative study of machine learning methods for COVID-19 transmission forecasting," J. Biomed. Inform., vol. 118, p. 103791, 2021. doi: 10.1016/j.jbi.2021.103791.
W. A. Awadh, A. S. Alasady, and H. I. Mustafa, “Predictions of COVID-19 spread by using supervised data mining techniques,” in J. Phys.: Conf. Ser., vol. 1879, no. 2, p. 022081, May 2021, IOP Publishing. doi: 10.1088/1742-6596/1879/2/022081.
A. Toha, P. Purwono, and W. Gata, “Model Prediksi Kualitas Udara dengan Support Vector Machines dengan Optimasi Hyperparameter GridSearch CV,” Bul. Ilm. Sarjana Tek. Elektro, vol. 4, no. 1, pp. 12-21, May 2022. doi: 10.12928/biste.v4i1.6079.
M. Novela and T. Basaruddin, “Dataset Suara dan Teks Berbahasa Indonesia pada Rekaman Podcast dan Talk Show,” J. Fasilkom, vol. 11, no. 2, pp. 61-66, 2021. doi: 10.12345/jfas.v11i2.1612.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier dan Confusion Matrix pada Analisis Sentimen Berbasis Teks di Twitter,” J. Sains Komput. Inform. (J-SAKTI), vol. 5, no. 2, pp. 697-711, 2021. doi: 10.12345/jsakti.v5i2.1755.
Published
Issue
Section
License
Copyright (c) 2024 Ferdiansyah Ferdiansyah, Briandy Tri Putra, Evi Yulianingsih, Fatmasari Fatmasari, Muhammad Idham (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.