BBCA Stock Price Prediction Using Linear Regression Method

DOI:
https://doi.org/10.63158/IJAIS.v1.i1.7Keywords:
linear regression, stock price prediction, bbca, financial forecasting, volatile marketsAbstract
This study focuses on predicting the stock price of Bank Central Asia (BBCA) using linear regression techniques, a widely utilized statistical method in financial forecasting. Stock price prediction is critical for investors, particularly in volatile markets like Indonesia. This research analyzes the relationship between key variables, such as adjusted closing prices and trading volume, based on historical data. The methodology includes data collection, preprocessing, model construction, and evaluation using metrics like Root Mean Square Error (RMSE) to assess the model's accuracy. The results indicate that linear regression can effectively predict BBCA stock prices with reasonable accuracy, providing a practical and interpretable tool for investors. These findings contribute to financial forecasting by demonstrating the utility of linear regression in stock price prediction, particularly in emerging markets.
References
M. Q. Shobri et al., “Model Analisis Harga Saham Sektor Finansial PT. Bank Central Asia Tbk. (BBCA),” J. Keilmuan dan Keislam., pp. 260–269, 2023, doi: 10.23917/jkk.v2i4.170.
R. A. Fahrezi, M. Y. Wijaya, and N. Fitriyati, “Prediksi Harga Penutupan Saham Bank Central Asia: Implementasi Algoritma Long Short-Term Memory Dan Perbandingannya Dengan Support Vector Machine,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 5, no. 1, pp. 452–464, 2024, doi: 10.46306/lb.v5i1.582.
A. Fitri Boy, “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),” J. Sci. Soc. Res., vol. 4307, no. 2, pp. 78–85, 2020.
S. A. L. Satriyo, A. Rizky Pratama, and Rahmat, “Perbandingan metode linear regresi dan polynomial regresi untuk memprediksi harga saham studi kasus Bank BCA,” INFOTECH J. Inform. Teknol., vol. 4, no. 1, pp. 59–70, 2023, doi: 10.37373/infotech.v4i1.602.
I. M. Sinaga, A. Lubis, and A. Prayudi, “Pengaruh Internet Financial Reporting (Ifr) Dan Tingkat Pengungkapan Informasi Website Terhadap Frekuensi Perdagangan Saham Pada Perusahaan Pertambangan Yang Terdaftar Di Bei,” J. Ilm. Manaj. dan Bisnis, vol. 1, no. 2, pp. 106–111, 2020, doi: 10.31289/jimbi.v1i2.394.
P. Wi and D. Anggraeni, “Faktor-Faktor Yang Mempengaruhi Minat Karyawan Perusahaan Untuk Berinvestasi Di Pasar Modal Pada Masa Pandemi Covid 19,” J. Revenue J. Ilm. Akunt., vol. 1, no. 1, pp. 81–89, 2020, doi: 10.46306/rev.v1i1.15.
A. Riyandi, A. Aripin, I. N. Ardiansyah, R. Dany, and Y. Yusrizal, “Analisis Data Mining untuk Prediksi Harga Saham: Perbandingan Metode Regresi Linier dan Pola Historis,” J. Teknol. Sist. Inf., vol. 4, no. 2, pp. 278–288, 2023, doi: 10.35957/jtsi.v4i2.5158.
E. P. Ariesanto Akhmad, “Data Mining Menggunakan Regresi Linear untuk Prediksi Harga Saham Perusahaan Pelayaran,” J. Apl. Pelayaran dan Kepelabuhanan, vol. 10, no. 2, p. 120, 2020, doi: 10.30649/japk.v10i2.83.
P. Chang Hartono and A. Dwiyoga Widiantoro, “Analisis Prediksi Harga Saham Unilever Menggunakan Regresi Linier dengan RapidMiner,” J. Comput. Inf. Syst. Ampera, vol. 5, no. 3, pp. 2775–2496, 2024.
B. Panwar, G. Dhuriya, P. Johri, S. S. Yadav, and N. Gaur, "Stock market prediction using linear regression and SVM," in 2021 Int. Conf. on Advance Comput. and Innovative Technol. in Eng. (ICACITE), Uttar Pradesh, India, Mar. 2021, pp. 629-631. DOI: 10.1109/ICACITE51222.2021.9404785.
C. C. Emioma and S. O. Edeki, "Stock price prediction using machine learning on least-squares linear regression basis," in J. Phys.: Conf. Ser., vol. 1734, no. 1, p. 012058, 2021. DOI: 10.1088/1742-6596/1734/1/012058.
G. Sonkavde, D. S. Dharrao, A. M. Bongale, S. T. Deokate, D. Doreswamy, and S. K. Bhat, "Forecasting stock market prices using machine learning and deep learning models: A systematic review, performance analysis and discussion of implications," Int. J. Financ. Stud., vol. 11, no. 3, p. 94, July 2023. DOI: 10.3390/ijfs11030094.
N. Manasa, D. W. Praveenraj, and L. SR, "Predictive analytics for stock market trends using machine learning," in 2023 4th Int. Conf. Comput., Autom. and Knowl. Manag. (ICCAKM), Dubai, UAE, Dec. 2023, pp. 1-8. DOI: 10.1109/ACCESS.2020.3004351.
M. C. Chan, C. C. Wong, and C. C. Lam, "Financial time series forecasting by neural network using conjugate gradient learning algorithm and multiple linear regression weight initialization," in Comput. Econ. Finance, Kowloon, Hong Kong, vol. 61, pp. 326-342, 2000.
M. Göçken, M. Özçalıcı, A. Boru, and A. T. Dosdoğru, "Stock price prediction using hybrid soft computing models incorporating parameter tuning and input variable selection," Neural Comput. Appl., vol. 31, pp. 577-592, 2019. DOI: 10.1007/s00521-018-3523-2.
Published
Issue
Section
License
Copyright (c) 2024 Shannon Dominique Saputra, Albertus Dwiyoga Widiantoro (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.