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Abstract. This paper introduces a web-based expert system for
diagnosing electric-bicycle Faults that operationalizes backward-
chaining inference within an extensible, domain-specific
knowledge base. The platform supports both symptom-driven
and hypothesis-driven workflows: users may input observable
symptoms and/or a suspected Fault, after which the engine tests
candidate rules, gathers disconfirming evidence, and returns an
explainable diagnosis with a transparent reasoning trace. The
knowledge base—structured around fault, symptom, and rule
schemas curated from literature, service documentation, and
practitioner input—enables disciplined updates and governance.
A responsive interface implements guided data entry,
contradiction checks, and bilingual Iabels to reduce input variance
and improve usability. Functional validation via black-box testing
confirmed conformance across end-user and administrative
Flows, including rule invocation and CRUD persistence. The
discussion addresses design trade-offs (confirmation bias, rule
granularity), privacy and maintainability considerations, and
deployment pathways for workshops, manufacturers, and
consumers. Future work includes Ffield evaluation, probabilistic
uncertainty handling, telemetry integration, and interoperability
with parts inventories to strengthen external validity and

scalability.
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1 INTRODUCTION

The contemporary innovation landscape is increasingly shaped by the Fourth Industrial
Revolution (Industry 4.0), where pervasive digitization, cyber-physical integration, and
automation are redefining production, services, and everyday mobility. Yet amid
accelerating technological capability, a Ffirst-order constraint remains unchanged:
progress is ultimately bounded by the availability, reliability, and quality of energy [1][2].
This dependency is particularly visible in electrified transportation, where system
performance, cost, and user experience are mediated by power electronics, storage

technologies, and intelligent control that together translate energy into practical utility.

Against this backdrop, electric bicycles (e-bikes) represent a compelling, human-scale
expression of electro-mobility. By pairing compact traction motors with rechargeable
accumulators, e-bikes deliver propulsion independent of fossil fuels and offer a
pragmatic pathway to decarbonizing short- and mid-range travel [3]. Their market
momentum is propelled not only by environmental benefits but also by tangible
improvements in accessibility and comfort: reduced physical exertion—especially
valuable for older adults—and intuitive, user-friendly ergonomics that lower adoption
barriers across age and fitness levels [4][5]. As e-bikes scale from niche to mainstream,
however, their hybrid electro-mechanical nature introduces diagnostic opacity fFor end-
users and novice technicians, for whom even minor malfunctions can be difficult to

recognize, localize, and remedy.

Knowledge-based approaches have been explored to bridge this gap, with mixed success.
The expert system introduced in [6] sought to assist users in identifying e-bike Faults but
relied exclusively on fForward chaining, constraining interaction to preselected symptoms
and, crucially, prohibiting the entry of hypothesized faults—despite the fact that users
often reason from suspected causes. Adjacent work in the motorcycle domain
underscores both promise and limitation: study [7] applied backward chaining to Fuel-
injection motorcycles yet covered only ten fault types; research [8] realized a web-based
backward-chaining system achieving 88% diagnostic accuracy but employed a knowledge
representation not transferrable to e-bike architectures. Moreover, the web

implementation in [9] omitted persistent data storage, impeding iterative curation and
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expansion of the knowledge base—an essential capability in Ffast-evolving product

ecosystems.

Methodologically, the comparative analysis in [10] clarifies when each inference paradigm
confers advantage: forward chaining excels when progressing from observed symptoms
to candidate faults, whereas backward chaining is efficient for testing or refuting a
suspected fault by seeking corroborating evidence. The implication for e-bike support
tools is that real-world diagnostic workflows should embrace both modes—symptom-
driven and hypothesis-driven—to align with how users naturally alternate between
noticing effects and proposing causes. Yet, current web-based systems [11][12] do not
admit user-entered fault hypotheses, limiting ecological validity, user agency, and the

capacity to converge rapidly on plausible diagnoses.

These gaps motivate the present study, which contributes three advances. First, to our
knowledge, it delivers the inaugural web-based backward-chaining expert system
dedicated to e-bike Fault diagnosis, addressing a domain not served by prior
implementations. Second, it introduces an interactive interface that accommodates both
symptom input and user-supplied fault hypotheses, operationalizing hybrid diagnostic
workflows and mitigating the limitations identified in [6][11][12]. Third, it provides a
comprehensive, extensible knowledge base spanning more than Ffifteen e-bike fault
classes, coupled with an optimized rule-based inference strategy For multi-level
reasoning, thereby improving transparency, traceability, and updateability. A web-centric
architecture further enhances reach and maintainability, enabling streamlined data
handling and continuous accuracy improvements [13], while modular, interlinked page
designs support clear navigation, scalability, and efficient lifecycle management of

knowledge assets [141[15].

1 METHODS

This study Followed a structured, four-stage research Flow—literature study, data
collection, backward-chaining workflow design, and system testing—as summarized in
Figure 1. The sequence was chosen to (i) ground the work in established theory and prior
art, (ii) assemble a domain-specific knowledge base for e-bike diagnosis, (iii) Formalize a

goal-driven inference mechanism tailored to that knowledge, and (iv) verify functional
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correctness through black-box evaluation. Each stage is detailed below to ensure

transparency, reproducibility, and methodological rigor.

Data Implementation of System

Collection Backward Chaining Testing

Figure 1. Research Flow

2.1. Literature Study

The literature study synthesized evidence from both national and international journals
selected for methodological relevance and domain proximity. National publications were
reviewed to capture local operating contexts, component availability, and usage patterns
that shape Fault prevalence and symptom expression in e-bike systems. International
sources were used to consolidate theoretical underpinnings in expert systems, diagnostic
reasoning, and human-computer interaction, while also enabling cross-study
comparisons that inform transferable design choices. Selection emphasized peer-
reviewed articles, clear methodological reporting, and applicability to rule-based
diagnosis. This dual-source strategy strengthened construct validity, provided
triangulation across settings, and supported the derivation of design requirements and

evaluation criteria for the proposed system [16].

2.2. Data Collection

Data collection produced three curated datasets that constitute the system’s knowledge
base: (1) a Fault dataset enumerating distinct e-bike Failure classes and sub-classes (e.g,
powertrain, battery management, sensor and controller faults), including standardized
identifiers and brief operational definitions; (2) a symptom dataset cataloging observable
indicators (e.g, motor non-response, intermittent cut-out, abnormal voltage readings) and
contextual qualifiers (operating conditions, recurrence, severity); and (3) a rule dataset
encoding diagnostic relations that map symptoms (and symptom combinations) to
candidate faults with associated conditions and priorities. Data were compiled from
technical references, service manuals, and practitioner inputs aligned with the literature
review. Each entry was normalized to a consistent schema and cross-checked to reduce

ambiguity and duplication. Together, these datasets enable evidence-based inference,
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ensure consistent terminology across modules, and support maintainable updates as

components and fault patterns evolve.

2.3. Backward Chaining Workflow

The diagnostic engine implements a backward-chaining strategy, beginning with a target
conclusion (a suspected Ffault) and recursively seeking facts that confirm or refute it
through applicable rules. Concretely, the workFlow proceeds as follows: (i) Goal selection—
the system initializes one or more diagnostic goals based on user input (hypothesized
fault) or system suggestions; (i) Rule retrieval—it identifies rules whose consequents
match the current goal; (iii) Condition checking—For each candidate rule, required
symptoms and context conditions are queried from the knowledge base or elicited from
the user; (iv) Subgoal decomposition—unverified conditions are transformed into
subgoals, spawning additional checks down the rule tree; (v) Resolution and
backtracking—if a rule's conditions are satisfied, the goal is provisionally concluded;
otherwise, the engine backtracks to alternative rules; and (vi) Termination—the process
halts when goals are confirmed, disproven, or no further applicable rules remain. This
goal-driven approach aligns with user workflows that often begin from an intuitive
hypothesis and then seek corroborating evidence, thereby complementing symptom-Ffirst
strategies prevalent in fForward chaining [17], [18], [19]. An illustrative decision-tree
fragment used during knowledge engineering is shown in Figure 2, adapted from prior

work in motorcycle diagnostics to guide rule structuring and branching logic [7].
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Figure 2. Decision Tree Illustration [7]
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2.4. System Testing

Functional verification employed black-box testing, Focusing on externally observable
behavior without inspecting internal code. Test cases were derived from the rule base
and common user scenarios, covering nominal diagnoses, conflicting symptoms,
incomplete information, and negative cases where no rule should fire. Inputs were varied
to exercise different rule paths and backtracking behaviors, while outputs were checked
For correctness of diagnosed fault sets, explanation traces, and user prompts. Acceptance
criteria included accurate rule activation, consistent goal resolution, and robust handling
of missing or contradictory inputs. This method is widely used For validating software
components against specifications and is well-suited to expert-system interfaces where
correctness is defined at the input-output boundary rather than by internal

implementation details [20], [21].

3. RESULTS AND DISCUSSION

3.1. Expert System

Forward Chaining and Backward Chaining are the two principal rule-based reasoning
strategies used in expert systems. Forward Chaining is data-driven: inference begins from
known Facts or symptoms and matches them to the IF part of rules to derive conclusions.
This approach is well suited to users who do not yet know the specific malfunction but
can recognize observable symptoms. In the context of electric bicycles, for example, an
Android-based expert system developed by [6] guides users to a diagnosis simply by
selecting the symptoms they observe. In contrast, Backward Chaining is goal-driven: the
process starts from a hypothesized malfunction, and the system then traces backward
to find fFacts or symptoms that support or refute that hypothesis. This method is more
efficient when users already have an initial suspicion and want to validate it through
targeted evidence gathering. Practically, a user First selects a suspected fault, and the
system queries for corroborating symptoms. In general, Forward Chaining tends to suit
novice users who can only identify symptoms, whereas Backward Chaining better serves
users who possess an initial understanding of the problem. Both strategies can be
employed complementarily, depending on user needs and their technical literacy with the

developed system.
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1) Data Collection

The literature review examined decision-making methods commonly used in expert
systems, with a focus on Backward Chaining. The evaluation Followed predefined
criteria—traceable logic, rule structure, and consistent terminology—to ensure the system
can draw conclusions systematically from available data and symptoms. Accordingly,
Backward Chaining is expected to contribute to decision-making that is more accurate,

well-structured, and logically defensible.

Data collection for diagnosing electric bicycle malfunctions was conducted through
observation and interviews. Three datasets were compiled: (1) a fault dataset listing
potential Failure types; (2) a symptom dataset describing initial indicators of faults; and
(3) a rule dataset linking symptom combinations to specific fault types. Together, these
datasets form the system's knowledge base, supporting inference and evidence-based

decision-making throughout the study.

Table 1. Malfunction Data [6]

No Fault Code MalFunction Description

1 K1 Damaged battery

2 K2 Damaged motor

3 K3 Broken or loose cable

4 K4 Restricted electrical flow

5 K5 Worn mechanical component
6 K6 Battery not supplying power
7 K7 Poor battery connection

8 K8 Electrical Flow disturbance
9 K9 Worn battery

10 K10 Motor not receiving power
n K11 Faulty power regulator

12 K12 Worn motor

13 K13 Damaged cable

14 K14 Faulty control module

15 K15 Unstable connection

16 K16 Problematic power system
17 K17 Widespread electrical flow issue
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No Fault Code MalFunction Description

18 K18 Damaged battery and motor

19 K19 Poor electrical connection

20 K20 Battery damage and power disturbance
21 K21 Combined power and mechanical problem
22 K22 Motor and cable issues

23 K23 Worn motor and control module

24 K24 Worn motor and components

25 K25 Worn cables and components

26 K26 System-wide power problem

27 K27 Damaged power and mechanical systems
28 K28 System-wide malfunction

29 K29 Complex power and connection problems
30 K30 Damaged motor, cables, and mechanics
31 K31 Overall bicycle system failure

Table 1 lists various types of electric bicycle faults along with their unique ID codes, using

the symbol (K) to denote faults. Serving as the expert system's primary reference, this

table will assist in diagnosing issues based on user-input symptoms.

Table 2 Symptom Data [6]

No Symptom Code Symptom Description

1 G1 Bicycle cannot be powered on

2 G2 Bicycle will not move

3 G3 Indicator light does not turn on

4 G4 Bicycle shuts off suddenly during operation
5 G5 Unusual noise while riding

Table 2 contains a list of symptoms that may occur in malfunctioning electric bicycles,

each with a unique ID code. These symptoms (denoted as (G)) will serve as user input to

initiate the system's diagnostic process.
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Figure 1. Example of a Backward-Chaining Decision Tree

As illustrated in Figure 3, the expert system applies a backward-chaining strategy to
diagnose electric bicycle Faults by starting from a suspected fault (the goal node) and
tracing backward through rule links to the required evidence (symptom nodes). In
practice, the user's input initializes one or more diagnostic goals (codes K), and the
inference engine navigates the decision tree to seek confirming or disconfirming
symptoms (codes G). The branching in Figure 3 clarifies how alternative rules are explored
when a required symptom is absent, ensuring systematic backtracking until a consistent

explanation is found or all candidate paths are exhausted.

The diagnostic fFlow begins with Fault Selection, where users specify the malfunction,
they wish to verify (e.g, K7 - Poor battery connection, K11 - Faulty power regulator). This
step, depicted at the top of Figure 3, anchors the reasoning at a concrete hypothesis so
the system can retrieve only those rules whose consequents match the selected fault.
By constraining the search space in this way, the tree in Figure 3 reduces unnecessary

exploration and accelerates convergence on likely causes.

Next, the system proceeds to Symptom Identification. Guided by the branches in Figure
3, the engine queries the user for observable indicators that correspond to the rule
antecedents. Symptoms are encoded to streamline matching, for example: G1 (Bicycle
cannot be powered on), G2 (Bicycle will not move), G3 (Indicator light does not turn on),
G4 (Sudden shutdown during use), and G5 (Unusual noise while riding). In the decision
tree of Figure 3, each required symptom appears as a branching condition leading toward

or away from the hypothesized fault.
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with the hypothesis and symptoms in hand, the Rule Processing stage aligns user inputs
to predefined diagnostic rules derived from empirical data and technician interviews. As
exemplified by the branches and leaf nodes in Figure 3, the system evaluates rules such
as: A1—if G1 and G3 are present, then the likely malfunction is K7 (Poor battery
connection); A2—if G2 and G4 are present, then the likely malfunction is K11 (Faulty power
regulator); and A3—if G5 alone is present, then the likely malfunction is K5 (Worn
mechanical component). When a rule's antecedents are satisfied, the corresponding
branch in Figure 3 terminates at a fault node, signaling provisional confirmation;

otherwise, the engine backtracks to evaluate alternative branches.

The system delivers the Diagnostic Output, presenting the most probable fault(s) and the
evidence path used to reach them—mirroring the successful path through Figure 3.
Typical results include K5 (Worn mechanical component), K7 (Poor battery connection),
and K11 (Faulty power regulator). By explicitly mapping each conclusion to its supporting
rules and symptoms—as visually organized in Figure 3—the system maintains a
transparent explanation trail, Facilitating technician review, user trust, and iterative

refinement of the knowledge base.

2) Diagnosis

The diagnosis modules shown in Figure 4 implements a guided backward-chaining
workFflow through a clean, Four-step interface optimized for clarity, speed, and data
integrity. A compact header displays the title “Bycle Fault Diagnose” and a tagline
indicating that the engine reasons via backward chaining. The layout Follows a left-to-
right hierarchy—identity —» (optional) Fault hypothesis - symptom capture - execution—
with responsive behavior for desktop, tablet, and mobile. Inline validation, context
tooltips, and status cues (neutral/valid/error) ensure inputs are complete and machine-

parsable before the reasoning engine runs.

Step 1 — Personal Data Input. Users provide Full Name, Email, and WhatsApp Contact.
Client-side validation enforces correct formats (RFC-compliant email, country-aware
phone masks), trims whitespace, and normalizes characters; server-side checks create a
short-lived session ID linking identity, inputs, and results for auditability. Pll is stored
separately from diagnostic data, transported over HTTPS/TLS, and encrypted at rest.

Users may proceed without contact details; the engine still executes, though report
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exports (PDF/CSV) remain disabled unless at least one contact method is provided. A

privacy notice explains retention and deletion policies.

Hasil Diagnosa Kerusakan Sepeda

Informasi Pengguna
,,,,, Nama Lengkap: hmad
Email: mid@gmeial
Kontak WhatsApp: 34532
Pilih Kerusakan
Hasil Diagnosa
K5 - Komponen mekanik aus
Pilih Gejata yang Diatami
Gejala yang Dipilih
Diagrosa |
ot

Figure 4. Diagnosis Process

Step 2 — Select Damage Type (Optional Hypothesis). A searchable dropdown lets users
select a suspected damage category (K code) to seed the backward-chaining goal. If no
hypothesis is supplied, the system starts in neutral mode and proposes goals after a brief
symptom triage. The list is grouped semantically (Power System, Motor/Drive,
Cabling/Connectivity, Control Electronics, Mechanical). When a K code is Focused, as
shown in Figure 4, the Ul displays a short definition and typical manifestations from the
knowledge base. Selection does not bias the outcome: the engine will confirm or refute

the hypothesis against evidence.

Step 3 — Select Symptoms. Users choose one or more symptoms (G codes) from a
Filterable checklist. Each item includes a concise Iabel and an expandable description with
examples and measurement guidance (e.g, multimeter ranges). Common entries include
G1 (Bicycle cannot be powered on), G2 (Bicycle will not move), G3 (Indicator light does not
turn on), G4 (Sudden shutdown during use), and G5 (Unusual noise while riding). To reduce
bias, the list is ordered by category and recent usage rather than likelihood. The interface
flags mutually exclusive selections (e.g, “cannot power on” alongside “indicator light
normal”) and suggests adding high-value symptoms if the current set is weak—as shown

in Figure 4.

The diagnosis results page of this electric bicycle expert system presents a

comprehensive report on identified damage issues. User information—including Full
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Name, Email, and WhatsApp Contact—provides contextual reporting details. Within the
'‘Diagnosis Findings' section, the system displays both the symptoms selected by the user
and the corresponding identified damage. These results are generated through rule-
based correlation between the user-reported symptoms and the system's knowledge
base. Interactive controls include a 'New Diagnosis' button to restart the diagnostic
process, and an '‘Admin Portal' button that redirects administrators to the login interface

for system management.

3)  Expert System Testing

This subsection details the validation of the web-based expert system for diagnosing
electric-bicycle faults that employs a backward-chaining inference engine. We adopted
Black-Box Testing to verify externally observable behavior against specifications without
inspecting internal code paths. The objectives were to (i) confirm end-to-end correctness
of the diagnostic workflow, (ii) validate user-interface behavior and input validation, and
(iii) ensure that outputs (diagnoses, confidence cues, and administrative actions) are
consistent with user inputs and the encoded rule base. Test design drew on equivalence
partitioning, boundary-value analysis, and state-transition checks for the key Flows (user
diagnosis and admin maintenance), emphasizing reproducibility and clear pass/Fail
criteria.

Table 3. Black Box Testing Results

No Test Scenario

Test Input (Example)

Expected Result

Actual Result

User completes
diagnosis form
1 (name, contact,
email, suspected

fFault, symptoms)

Full Name: ahmad; Contact:
123456; Email: ahmad@test.com;
Fault: K1; Symptom: G1

System generates
diagnosis consistent
with selected
fault/symptoms and

enables result saving

Matches
expectation;

save enabled

Admin logs in with

Username: admin; Password:

Credentials processed;

Matches

2 access to Admin menu
credentials admin expectation
granted
Symptom Changes persist to
Create/Write/Update/Delete Matches
3 management symptoms database
Symptom expectation
(create, edit, delete) and reflect in Ul
Fault (damage) Changes persist to
Matches
4 management Create/Write/Update/Delete Fault faults database and
expectation
(create, edit, delete) reflect in Ul
Rule management Changes persist to Matches
5 Create/Write/Update/Delete Rule

(create, edit, delete)

rules database;

expectation
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No Test Scenario Test Input (Example) Expected Result Actual Result

inference uses updated

rules
Admin account Changes persist to
Create/Write/Update/Delete Matches
6 management admin-accounts
Account expectation
(create, edit, delete) database
Session terminated;
Matches
7 Admin logout Click Logout redirected to Login
expectation
page

Test scope and design. Functional coverage included: user session initiation; personal-
data capture; optional hypothesis selection (Fault K); symptom selection (G); diagnosis
execution; and structured presentation of results. Administrative coverage included
authentication, CRUD operations for symptomes, fFaults, rules, and admin accounts, as well
as session termination (logout). Non-functional checks (observability of validation
messages, graceful error handling, and role-aware navigation) were assessed qualitatively
during execution. The environment comprised a3 modern standards-compliant browser,
server-hosted application, and a persistent datastore; results below reflect behavior at

the user-system interface.

3.2. Discussion

This study demonstrates that a web-based, backward-chaining expert system can
operationalize hypothesis-driven troubleshooting for e-bikes in a way that more closely
mirrors how technicians and informed users’ reason in practice. By allowing users to start
with a suspected fault (goal) and then elicit corroborating or disconfirming evidence, the
workflow aligns with the methodological advantages of backward chaining described in
the literature [10] and addresses interaction gaps noted in prior systems that restricted
users to symptom-only inputs [6][11][12]. The accompanying knowledge base—structured
around distinct Ffault classes, observable symptoms, and explicit rules—supports
transparent, traceable inference. In applied contexts (home users, repair shops, after-
sales support), this translates to shorter diagnostic paths, clearer next steps, and a shared
vocabulary between users and technicians, thereby reducing miscommunication costs

and rework.
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The system extends earlier efforts in several ways without duplicating their scope. First,
where forward-chaining implementations primarily served novice users by progressing
from observations to causes [6], our design inverts the starting point to accommodate
hypothesis testing, which is valuable when a user or technician already has a tentative
diagnosis in mind [10]. Second, unlike motorcycle-focused implementations that either
limited the set of faults [7] or employed knowledge models not transferable to e-bike
architectures [8], the present work tailors its ontology (Fault, symptom, rule schemas) to
e-bike components and typical failure modes. Finally, the decision to deploy on the web
with persistent storage directly addresses sustainability and maintainability issues raised
by non-persistent prototypes [9], enabling iterative curation of rules and terminology as

devices and usage patterns evolve.

Key design choices introduce trade-offs that warrant discussion. Prioritizing backward
chaining improves efficiency when a credible hypothesis exists, but it can also bias users
toward confirmation; the interface mitigates this with prompts Ffor disconfirming
evidence, negative tests, and explanations of why alternatives were rejected. Confidence
scores help communicate uncertainty, yet they arise from rule weights and coverage
rather than probabilistic calibration; without ground-truth labels across diverse cases,
these scores should be interpreted as heuristic guidance rather than absolute likelihoods.
Another consideration is knowledge-base granularity: finer-grained rules increase
diagnostic precision but also raise authoring and maintenance overhead. The chosen
compromise—modular rules with shared antecedents—supports reuse while keeping the
authoring burden manageable. From a validity perspective, black-box functional testing
ensures conformance to specifications but does not, by itself, establish clinical-style
diagnostic accuracy; field evaluation with annotated cases and inter-rater comparisons
remains necessary to quantify sensitivity/specificity across Fault categories. Finally, user-
entered data introduce variance (e.g, inconsistent symptom interpretation); the Ul's
definitions, examples, and contradiction checks reduce but do not eliminate this source

of noise.

The system's explanatory artifacts—goal trees, fFired rules, and “why-not” rationales—serve
both usability and trust. Unlike opaque recommenders, rule-based traces let users audit
how a conclusion was reached and what additional evidence could flip the outcome. This

aligns with explainability best practices and is particularly important for safety-adjacent
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recommendations (e.g, electrical checks). The symptom capture Flow balances guidance
with autonomy: plain-language labels are paired with concise technical cues
(measurement ranges, operating conditions), assisting non-experts without
oversimplifying For technicians. Accessibility considerations (keyboard navigation, screen-
reader roles, contrast) increase reach, while bilingual labels help bridge terminology gaps
between English-language documentation and local workshop parlance—an issue noted
in national vs. international literature synthesis [16]. Collectively, these choices support

informed decision-making rather than rote button-clicking.

Persisting cases and rule edits in a versioned datastore enables continuous improvement,
but it also raises governance questions. Curation workflows should include change
proposals, peer review, and rollback capabilities to prevent degradation from erroneous
edits. To manage drift as new e-bike models and components arrive, scheduled audits
can compare rule coverage against service bulletins and prevalent support tickets. On
privacy, the architecture segregates personally identifiable information from diagnostic
content, enforces transport encryption, and provides user-controlled deletion—practices
consistent with minimizing data exposure while preserving the ability to reproduce
explanations. Ethically, the system must avoid overconfidence: language in the Ul should
communicate that recommendations are decision support, not guarantees, and should
flag cases where professional inspection is advisable (e.g, signs of thermal damage).
Finally, inclusive design suggests monitoring for differential performance across user

groups (novices vs. technicians) and adapting prompts and Flows accordingly.

For workshops, the platform can Function as a triage and training tool: novices can follow
prompted checks while experts use it to document rationale and share institutional
knowledge. Integration with inventory systems would let rule outputs trigger parts
availability checks, shortening repair cycles. For manufacturers and distributors,
anonymized aggregate analytics (e.g, co-occurrence of symptoms, seasonal fFailure spikes)
could inform design improvements and warranty policies—provided that data collection
is transparent and consent-based. In consumer scenarios, a lightweight mode that
supports “quick checks" (battery connectors, basic continuity tests) could reduce
unnecessary service visits while still escalating risky conditions. Over time, connecting

the rule base to telemetry from smart controllers or battery management systems could
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shift some inputs from self-report to measured signals, improving consistency and

enabling proactive fault detection.

Three limitations suggest immediate avenues For expansion. First, the current knowledge
base, while broader than prior art, remains finite; introducing semi-automated knowledge
acquisition (e.g, rule candidates mined from labeled cases) could accelerate coverage
growth while keeping human review in the loop. Second, uncertainty handling is rule-
centric; augmenting the engine with probabilistic layers (Bayesian updating or Dempster-
Shafer for conflicting evidence) would allow more nuanced confidence estimates,
particularly under sparse or noisy symptom sets. Third, evaluation to date emphasizes
Functional correctness; future studies should include prospective Field trials with
technician ground truth, time-to-diagnosis metrics, and user-perceived workload (e.g,
SUS or NASA-TLX) to quantify human-factors benefits. Additional priorities include
multilingual term alignment, mobile-first optimization Ffor constrained network
environments, and APIs for interoperability with service management and parts catalog

systems.

Although tailored to e-bikes, the methodology—domain-specific ontology, transparent
rules, hybrid user interaction (symptom-driven and hypothesis-driven), and web-based
delivery—transfers to adjacent small-EV platforms (e-scooters, e-mopeds) and other
consumer mechatronic products where fault identification relies on a mix of observable
symptoms and simple measurements. The key to portability is disciplined separation
between core inference logic and domain knowledge; by keeping rules declarative and
data schemas explicit, new domains can be onboarded with limited engineering effort

while retaining the explainability and governance features emphasized here.

4. CONCLUSION

This study advances diagnostic support for electric bicycles by formalizing a web-based,
backward-chaining expert system grounded in an extensible, domain-specific knowledge
base and an interface that accommodates both symptom-driven and hypothesis-driven
workFflows. By coupling transparent rule traces with versioned knowledge governance
and privacy-aware data handling, the platform delivers explainable, auditable outcomes

suitable for service operations and after-sales support while creating a sustainable
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pathway for continuous improvement. Although black-box validation establishes
Functional conformance, rigorous field evaluations remain necessary to quantify
diagnostic accuracy, time-to-decision, and user burden across stakeholder groups. Future
enhancements should incorporate principled uncertainty handling, multilingual term
harmonization, mobile-first optimizations Ffor resource-constrained settings, and
integrations with telemetry and parts inventory systems. Collectively, these steps will
strengthen external validity, support responsible scaling, and position the system as a

durable foundation For decision support across adjacent small-EV domains.
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