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Abstract. This paper introduces a web-based expert system for 

diagnosing electric-bicycle faults that operationalizes backward-

chaining inference within an extensible, domain-specific 

knowledge base. The platform supports both symptom-driven 

and hypothesis-driven workflows: users may input observable 

symptoms and/or a suspected fault, after which the engine tests 

candidate rules, gathers disconfirming evidence, and returns an 

explainable diagnosis with a transparent reasoning trace. The 

knowledge base—structured around fault, symptom, and rule 

schemas curated from literature, service documentation, and 

practitioner input—enables disciplined updates and governance. 

A responsive interface implements guided data entry, 

contradiction checks, and bilingual labels to reduce input variance 

and improve usability. Functional validation via black-box testing 

confirmed conformance across end-user and administrative 

flows, including rule invocation and CRUD persistence. The 

discussion addresses design trade-offs (confirmation bias, rule 

granularity), privacy and maintainability considerations, and 

deployment pathways for workshops, manufacturers, and 

consumers. Future work includes field evaluation, probabilistic 

uncertainty handling, telemetry integration, and interoperability 

with parts inventories to strengthen external validity and 

scalability. 

 

Keywords: electric bicycle diagnostics; expert systems; backward 

chaining; explainable AI; web-based decision support 
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1. INTRODUCTION 

 

The contemporary innovation landscape is increasingly shaped by the Fourth Industrial 

Revolution (Industry 4.0), where pervasive digitization, cyber-physical integration, and 

automation are redefining production, services, and everyday mobility. Yet amid 

accelerating technological capability, a first-order constraint remains unchanged: 

progress is ultimately bounded by the availability, reliability, and quality of energy [1][2]. 

This dependency is particularly visible in electrified transportation, where system 

performance, cost, and user experience are mediated by power electronics, storage 

technologies, and intelligent control that together translate energy into practical utility. 

 

Against this backdrop, electric bicycles (e-bikes) represent a compelling, human-scale 

expression of electro-mobility. By pairing compact traction motors with rechargeable 

accumulators, e-bikes deliver propulsion independent of fossil fuels and offer a 

pragmatic pathway to decarbonizing short- and mid-range travel [3]. Their market 

momentum is propelled not only by environmental benefits but also by tangible 

improvements in accessibility and comfort: reduced physical exertion—especially 

valuable for older adults—and intuitive, user-friendly ergonomics that lower adoption 

barriers across age and fitness levels [4][5]. As e-bikes scale from niche to mainstream, 

however, their hybrid electro-mechanical nature introduces diagnostic opacity for end-

users and novice technicians, for whom even minor malfunctions can be difficult to 

recognize, localize, and remedy. 

 

Knowledge-based approaches have been explored to bridge this gap, with mixed success. 

The expert system introduced in [6] sought to assist users in identifying e-bike faults but 

relied exclusively on forward chaining, constraining interaction to preselected symptoms 

and, crucially, prohibiting the entry of hypothesized faults—despite the fact that users 

often reason from suspected causes. Adjacent work in the motorcycle domain 

underscores both promise and limitation: study [7] applied backward chaining to fuel-

injection motorcycles yet covered only ten fault types; research [8] realized a web-based 

backward-chaining system achieving 88% diagnostic accuracy but employed a knowledge 

representation not transferrable to e-bike architectures. Moreover, the web 

implementation in [9] omitted persistent data storage, impeding iterative curation and 
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expansion of the knowledge base—an essential capability in fast-evolving product 

ecosystems. 

 

Methodologically, the comparative analysis in [10] clarifies when each inference paradigm 

confers advantage: forward chaining excels when progressing from observed symptoms 

to candidate faults, whereas backward chaining is efficient for testing or refuting a 

suspected fault by seeking corroborating evidence. The implication for e-bike support 

tools is that real-world diagnostic workflows should embrace both modes—symptom-

driven and hypothesis-driven—to align with how users naturally alternate between 

noticing effects and proposing causes. Yet, current web-based systems [11][12] do not 

admit user-entered fault hypotheses, limiting ecological validity, user agency, and the 

capacity to converge rapidly on plausible diagnoses. 

 

These gaps motivate the present study, which contributes three advances. First, to our 

knowledge, it delivers the inaugural web-based backward-chaining expert system 

dedicated to e-bike fault diagnosis, addressing a domain not served by prior 

implementations. Second, it introduces an interactive interface that accommodates both 

symptom input and user-supplied fault hypotheses, operationalizing hybrid diagnostic 

workflows and mitigating the limitations identified in [6][11][12]. Third, it provides a 

comprehensive, extensible knowledge base spanning more than fifteen e-bike fault 

classes, coupled with an optimized rule-based inference strategy for multi-level 

reasoning, thereby improving transparency, traceability, and updateability. A web-centric 

architecture further enhances reach and maintainability, enabling streamlined data 

handling and continuous accuracy improvements [13], while modular, interlinked page 

designs support clear navigation, scalability, and efficient lifecycle management of 

knowledge assets [14][15]. 

 

1. METHODS 

 

This study followed a structured, four-stage research flow—literature study, data 

collection, backward-chaining workflow design, and system testing—as summarized in 

Figure 1. The sequence was chosen to (i) ground the work in established theory and prior 

art, (ii) assemble a domain-specific knowledge base for e-bike diagnosis, (iii) formalize a 

goal-driven inference mechanism tailored to that knowledge, and (iv) verify functional 
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correctness through black-box evaluation. Each stage is detailed below to ensure 

transparency, reproducibility, and methodological rigor. 

 

 
Figure 1. Research Flow 

 

2.1. Literature Study 

The literature study synthesized evidence from both national and international journals 

selected for methodological relevance and domain proximity. National publications were 

reviewed to capture local operating contexts, component availability, and usage patterns 

that shape fault prevalence and symptom expression in e-bike systems. International 

sources were used to consolidate theoretical underpinnings in expert systems, diagnostic 

reasoning, and human–computer interaction, while also enabling cross-study 

comparisons that inform transferable design choices. Selection emphasized peer-

reviewed articles, clear methodological reporting, and applicability to rule-based 

diagnosis. This dual-source strategy strengthened construct validity, provided 

triangulation across settings, and supported the derivation of design requirements and 

evaluation criteria for the proposed system [16]. 

 

2.2. Data Collection 

Data collection produced three curated datasets that constitute the system’s knowledge 

base: (1) a fault dataset enumerating distinct e-bike failure classes and sub-classes (e.g., 

powertrain, battery management, sensor and controller faults), including standardized 

identifiers and brief operational definitions; (2) a symptom dataset cataloging observable 

indicators (e.g., motor non-response, intermittent cut-out, abnormal voltage readings) and 

contextual qualifiers (operating conditions, recurrence, severity); and (3) a rule dataset 

encoding diagnostic relations that map symptoms (and symptom combinations) to 

candidate faults with associated conditions and priorities. Data were compiled from 

technical references, service manuals, and practitioner inputs aligned with the literature 

review. Each entry was normalized to a consistent schema and cross-checked to reduce 

ambiguity and duplication. Together, these datasets enable evidence-based inference, 
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Implementation of 
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ensure consistent terminology across modules, and support maintainable updates as 

components and fault patterns evolve. 

 

2.3. Backward Chaining Workflow 

The diagnostic engine implements a backward-chaining strategy, beginning with a target 

conclusion (a suspected fault) and recursively seeking facts that confirm or refute it 

through applicable rules. Concretely, the workflow proceeds as follows: (i) Goal selection—

the system initializes one or more diagnostic goals based on user input (hypothesized 

fault) or system suggestions; (ii) Rule retrieval—it identifies rules whose consequents 

match the current goal; (iii) Condition checking—for each candidate rule, required 

symptoms and context conditions are queried from the knowledge base or elicited from 

the user; (iv) Subgoal decomposition—unverified conditions are transformed into 

subgoals, spawning additional checks down the rule tree; (v) Resolution and 

backtracking—if a rule’s conditions are satisfied, the goal is provisionally concluded; 

otherwise, the engine backtracks to alternative rules; and (vi) Termination—the process 

halts when goals are confirmed, disproven, or no further applicable rules remain. This 

goal-driven approach aligns with user workflows that often begin from an intuitive 

hypothesis and then seek corroborating evidence, thereby complementing symptom-first 

strategies prevalent in forward chaining [17], [18], [19]. An illustrative decision-tree 

fragment used during knowledge engineering is shown in Figure 2, adapted from prior 

work in motorcycle diagnostics to guide rule structuring and branching logic [7].  

 

 
Figure 2. Decision Tree Illustration [7] 
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2.4. System Testing 

Functional verification employed black-box testing, focusing on externally observable 

behavior without inspecting internal code. Test cases were derived from the rule base 

and common user scenarios, covering nominal diagnoses, conflicting symptoms, 

incomplete information, and negative cases where no rule should fire. Inputs were varied 

to exercise different rule paths and backtracking behaviors, while outputs were checked 

for correctness of diagnosed fault sets, explanation traces, and user prompts. Acceptance 

criteria included accurate rule activation, consistent goal resolution, and robust handling 

of missing or contradictory inputs. This method is widely used for validating software 

components against specifications and is well-suited to expert-system interfaces where 

correctness is defined at the input–output boundary rather than by internal 

implementation details [20], [21].  

 

3. RESULTS AND DISCUSSION 

 

3.1. Expert System 

Forward Chaining and Backward Chaining are the two principal rule-based reasoning 

strategies used in expert systems. Forward Chaining is data-driven: inference begins from 

known facts or symptoms and matches them to the IF part of rules to derive conclusions. 

This approach is well suited to users who do not yet know the specific malfunction but 

can recognize observable symptoms. In the context of electric bicycles, for example, an 

Android-based expert system developed by [6] guides users to a diagnosis simply by 

selecting the symptoms they observe. In contrast, Backward Chaining is goal-driven: the 

process starts from a hypothesized malfunction, and the system then traces backward 

to find facts or symptoms that support or refute that hypothesis. This method is more 

efficient when users already have an initial suspicion and want to validate it through 

targeted evidence gathering. Practically, a user first selects a suspected fault, and the 

system queries for corroborating symptoms. In general, Forward Chaining tends to suit 

novice users who can only identify symptoms, whereas Backward Chaining better serves 

users who possess an initial understanding of the problem. Both strategies can be 

employed complementarily, depending on user needs and their technical literacy with the 

developed system. 
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1) Data Collection 

The literature review examined decision-making methods commonly used in expert 

systems, with a focus on Backward Chaining. The evaluation followed predefined 

criteria—traceable logic, rule structure, and consistent terminology—to ensure the system 

can draw conclusions systematically from available data and symptoms. Accordingly, 

Backward Chaining is expected to contribute to decision-making that is more accurate, 

well-structured, and logically defensible. 

 

Data collection for diagnosing electric bicycle malfunctions was conducted through 

observation and interviews. Three datasets were compiled: (1) a fault dataset listing 

potential failure types; (2) a symptom dataset describing initial indicators of faults; and 

(3) a rule dataset linking symptom combinations to specific fault types. Together, these 

datasets form the system’s knowledge base, supporting inference and evidence-based 

decision-making throughout the study. 

 

Table 1. Malfunction Data [6] 

No Fault Code Malfunction Description 

1 K1 Damaged battery 

2 K2 Damaged motor 

3 K3 Broken or loose cable 

4 K4 Restricted electrical flow 

5 K5 Worn mechanical component 

6 K6 Battery not supplying power 

7 K7 Poor battery connection 

8 K8 Electrical flow disturbance 

9 K9 Worn battery 

10 K10 Motor not receiving power 

11 K11 Faulty power regulator 

12 K12 Worn motor 

13 K13 Damaged cable 

14 K14 Faulty control module 

15 K15 Unstable connection 

16 K16 Problematic power system 

17 K17 Widespread electrical flow issue 
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No Fault Code Malfunction Description 

18 K18 Damaged battery and motor 

19 K19 Poor electrical connection 

20 K20 Battery damage and power disturbance 

21 K21 Combined power and mechanical problem 

22 K22 Motor and cable issues 

23 K23 Worn motor and control module 

24 K24 Worn motor and components 

25 K25 Worn cables and components 

26 K26 System-wide power problem 

27 K27 Damaged power and mechanical systems 

28 K28 System-wide malfunction 

29 K29 Complex power and connection problems 

30 K30 Damaged motor, cables, and mechanics 

31 K31 Overall bicycle system failure 

 
Table 1 lists various types of electric bicycle faults along with their unique ID codes, using 

the symbol (K) to denote faults. Serving as the expert system's primary reference, this 

table will assist in diagnosing issues based on user-input symptoms. 

 

Table 2 Symptom Data [6] 

No Symptom Code Symptom Description 

1 G1 Bicycle cannot be powered on 

2 G2 Bicycle will not move 

3 G3 Indicator light does not turn on 

4 G4 Bicycle shuts off suddenly during operation 

5 G5 Unusual noise while riding 

 

Table 2 contains a list of symptoms that may occur in malfunctioning electric bicycles, 

each with a unique ID code. These symptoms (denoted as (G)) will serve as user input to 

initiate the system's diagnostic process. 
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Figure 1. Example of a Backward-Chaining Decision Tree 

As illustrated in Figure 3, the expert system applies a backward-chaining strategy to 

diagnose electric bicycle faults by starting from a suspected fault (the goal node) and 

tracing backward through rule links to the required evidence (symptom nodes). In 

practice, the user’s input initializes one or more diagnostic goals (codes K), and the 

inference engine navigates the decision tree to seek confirming or disconfirming 

symptoms (codes G). The branching in Figure 3 clarifies how alternative rules are explored 

when a required symptom is absent, ensuring systematic backtracking until a consistent 

explanation is found or all candidate paths are exhausted. 

 

The diagnostic flow begins with Fault Selection, where users specify the malfunction, 

they wish to verify (e.g., K7 – Poor battery connection, K11 – Faulty power regulator). This 

step, depicted at the top of Figure 3, anchors the reasoning at a concrete hypothesis so 

the system can retrieve only those rules whose consequents match the selected fault. 

By constraining the search space in this way, the tree in Figure 3 reduces unnecessary 

exploration and accelerates convergence on likely causes. 

 

Next, the system proceeds to Symptom Identification. Guided by the branches in Figure 

3, the engine queries the user for observable indicators that correspond to the rule 

antecedents. Symptoms are encoded to streamline matching, for example: G1 (Bicycle 

cannot be powered on), G2 (Bicycle will not move), G3 (Indicator light does not turn on), 

G4 (Sudden shutdown during use), and G5 (Unusual noise while riding). In the decision 

tree of Figure 3, each required symptom appears as a branching condition leading toward 

or away from the hypothesized fault. 
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With the hypothesis and symptoms in hand, the Rule Processing stage aligns user inputs 

to predefined diagnostic rules derived from empirical data and technician interviews. As 

exemplified by the branches and leaf nodes in Figure 3, the system evaluates rules such 

as: A1—if G1 and G3 are present, then the likely malfunction is K7 (Poor battery 

connection); A2—if G2 and G4 are present, then the likely malfunction is K11 (Faulty power 

regulator); and A3—if G5 alone is present, then the likely malfunction is K5 (Worn 

mechanical component). When a rule’s antecedents are satisfied, the corresponding 

branch in Figure 3 terminates at a fault node, signaling provisional confirmation; 

otherwise, the engine backtracks to evaluate alternative branches. 

 

The system delivers the Diagnostic Output, presenting the most probable fault(s) and the 

evidence path used to reach them—mirroring the successful path through Figure 3. 

Typical results include K5 (Worn mechanical component), K7 (Poor battery connection), 

and K11 (Faulty power regulator). By explicitly mapping each conclusion to its supporting 

rules and symptoms—as visually organized in Figure 3—the system maintains a 

transparent explanation trail, facilitating technician review, user trust, and iterative 

refinement of the knowledge base. 

 
2) Diagnosis 

The diagnosis modules shown in Figure 4 implements a guided backward-chaining 

workflow through a clean, four-step interface optimized for clarity, speed, and data 

integrity. A compact header displays the title “Bycle Fault Diagnose” and a tagline 

indicating that the engine reasons via backward chaining. The layout follows a left-to-

right hierarchy—identity → (optional) fault hypothesis → symptom capture → execution—

with responsive behavior for desktop, tablet, and mobile. Inline validation, context 

tooltips, and status cues (neutral/valid/error) ensure inputs are complete and machine-

parsable before the reasoning engine runs. 

 

Step 1 — Personal Data Input. Users provide Full Name, Email, and WhatsApp Contact. 

Client-side validation enforces correct formats (RFC-compliant email, country-aware 

phone masks), trims whitespace, and normalizes characters; server-side checks create a 

short-lived session ID linking identity, inputs, and results for auditability. PII is stored 

separately from diagnostic data, transported over HTTPS/TLS, and encrypted at rest. 

Users may proceed without contact details; the engine still executes, though report 
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exports (PDF/CSV) remain disabled unless at least one contact method is provided. A 

privacy notice explains retention and deletion policies. 

 

  
Figure 4. Diagnosis Process 

 

Step 2 — Select Damage Type (Optional Hypothesis). A searchable dropdown lets users 

select a suspected damage category (K code) to seed the backward-chaining goal. If no 

hypothesis is supplied, the system starts in neutral mode and proposes goals after a brief 

symptom triage. The list is grouped semantically (Power System, Motor/Drive, 

Cabling/Connectivity, Control Electronics, Mechanical). When a K code is focused, as 

shown in Figure 4, the UI displays a short definition and typical manifestations from the 

knowledge base. Selection does not bias the outcome: the engine will confirm or refute 

the hypothesis against evidence. 

 

Step 3 — Select Symptoms. Users choose one or more symptoms (G codes) from a 

filterable checklist. Each item includes a concise label and an expandable description with 

examples and measurement guidance (e.g., multimeter ranges). Common entries include 

G1 (Bicycle cannot be powered on), G2 (Bicycle will not move), G3 (Indicator light does not 

turn on), G4 (Sudden shutdown during use), and G5 (Unusual noise while riding). To reduce 

bias, the list is ordered by category and recent usage rather than likelihood. The interface 

flags mutually exclusive selections (e.g., “cannot power on” alongside “indicator light 

normal”) and suggests adding high-value symptoms if the current set is weak—as shown 

in Figure 4. 

 

The diagnosis results page of this electric bicycle expert system presents a 

comprehensive report on identified damage issues. User information—including Full 



Vol. 2, No. 2, September 2025 

 

 

  

135 | Web-Based Electric Bicycle Fault Diagnosis Using the Backward Chaining Method 

Name, Email, and WhatsApp Contact—provides contextual reporting details. Within the 

'Diagnosis Findings' section, the system displays both the symptoms selected by the user 

and the corresponding identified damage. These results are generated through rule-

based correlation between the user-reported symptoms and the system's knowledge 

base. Interactive controls include a 'New Diagnosis' button to restart the diagnostic 

process, and an 'Admin Portal' button that redirects administrators to the login interface 

for system management. 

 

3) Expert System Testing 

This subsection details the validation of the web-based expert system for diagnosing 

electric-bicycle faults that employs a backward-chaining inference engine. We adopted 

Black-Box Testing to verify externally observable behavior against specifications without 

inspecting internal code paths. The objectives were to (i) confirm end-to-end correctness 

of the diagnostic workflow, (ii) validate user-interface behavior and input validation, and 

(iii) ensure that outputs (diagnoses, confidence cues, and administrative actions) are 

consistent with user inputs and the encoded rule base. Test design drew on equivalence 

partitioning, boundary-value analysis, and state-transition checks for the key flows (user 

diagnosis and admin maintenance), emphasizing reproducibility and clear pass/fail 

criteria. 

Table 3. Black Box Testing Results 

No Test Scenario Test Input (Example) Expected Result Actual Result 

1 

User completes 

diagnosis form 

(name, contact, 

email, suspected 

fault, symptoms) 

Full Name: ahmad; Contact: 

123456; Email: ahmad@test.com; 

Fault: K1; Symptom: G1 

System generates 

diagnosis consistent 

with selected 

fault/symptoms and 

enables result saving 

Matches 

expectation; 

save enabled 

2 
Admin logs in with 

credentials 

Username: admin; Password: 

admin 

Credentials processed; 

access to Admin menu 

granted 

Matches 

expectation 

3 

Symptom 

management 

(create, edit, delete) 

Create/Write/Update/Delete 

Symptom 

Changes persist to 

symptoms database 

and reflect in UI 

Matches 

expectation 

4 

Fault (damage) 

management 

(create, edit, delete) 

Create/Write/Update/Delete Fault 

Changes persist to 

faults database and 

reflect in UI 

Matches 

expectation 

5 
Rule management 

(create, edit, delete) 
Create/Write/Update/Delete Rule 

Changes persist to 

rules database; 

Matches 

expectation 
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No Test Scenario Test Input (Example) Expected Result Actual Result 

inference uses updated 

rules 

6 

Admin account 

management 

(create, edit, delete) 

Create/Write/Update/Delete 

Account 

Changes persist to 

admin-accounts 

database 

Matches 

expectation 

7 Admin logout Click Logout 

Session terminated; 

redirected to Login 

page 

Matches 

expectation 

 

Test scope and design. Functional coverage included: user session initiation; personal-

data capture; optional hypothesis selection (fault K); symptom selection (G); diagnosis 

execution; and structured presentation of results. Administrative coverage included 

authentication, CRUD operations for symptoms, faults, rules, and admin accounts, as well 

as session termination (logout). Non-functional checks (observability of validation 

messages, graceful error handling, and role-aware navigation) were assessed qualitatively 

during execution. The environment comprised a modern standards-compliant browser, 

server-hosted application, and a persistent datastore; results below reflect behavior at 

the user–system interface. 

 

3.2. Discussion 

This study demonstrates that a web-based, backward-chaining expert system can 

operationalize hypothesis-driven troubleshooting for e-bikes in a way that more closely 

mirrors how technicians and informed users’ reason in practice. By allowing users to start 

with a suspected fault (goal) and then elicit corroborating or disconfirming evidence, the 

workflow aligns with the methodological advantages of backward chaining described in 

the literature [10] and addresses interaction gaps noted in prior systems that restricted 

users to symptom-only inputs [6][11][12]. The accompanying knowledge base—structured 

around distinct fault classes, observable symptoms, and explicit rules—supports 

transparent, traceable inference. In applied contexts (home users, repair shops, after-

sales support), this translates to shorter diagnostic paths, clearer next steps, and a shared 

vocabulary between users and technicians, thereby reducing miscommunication costs 

and rework. 
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The system extends earlier efforts in several ways without duplicating their scope. First, 

where forward-chaining implementations primarily served novice users by progressing 

from observations to causes [6], our design inverts the starting point to accommodate 

hypothesis testing, which is valuable when a user or technician already has a tentative 

diagnosis in mind [10]. Second, unlike motorcycle-focused implementations that either 

limited the set of faults [7] or employed knowledge models not transferable to e-bike 

architectures [8], the present work tailors its ontology (fault, symptom, rule schemas) to 

e-bike components and typical failure modes. Finally, the decision to deploy on the web 

with persistent storage directly addresses sustainability and maintainability issues raised 

by non-persistent prototypes [9], enabling iterative curation of rules and terminology as 

devices and usage patterns evolve. 

 

Key design choices introduce trade-offs that warrant discussion. Prioritizing backward 

chaining improves efficiency when a credible hypothesis exists, but it can also bias users 

toward confirmation; the interface mitigates this with prompts for disconfirming 

evidence, negative tests, and explanations of why alternatives were rejected. Confidence 

scores help communicate uncertainty, yet they arise from rule weights and coverage 

rather than probabilistic calibration; without ground-truth labels across diverse cases, 

these scores should be interpreted as heuristic guidance rather than absolute likelihoods. 

Another consideration is knowledge-base granularity: finer-grained rules increase 

diagnostic precision but also raise authoring and maintenance overhead. The chosen 

compromise—modular rules with shared antecedents—supports reuse while keeping the 

authoring burden manageable. From a validity perspective, black-box functional testing 

ensures conformance to specifications but does not, by itself, establish clinical-style 

diagnostic accuracy; field evaluation with annotated cases and inter-rater comparisons 

remains necessary to quantify sensitivity/specificity across fault categories. Finally, user-

entered data introduce variance (e.g., inconsistent symptom interpretation); the UI’s 

definitions, examples, and contradiction checks reduce but do not eliminate this source 

of noise. 

 

The system’s explanatory artifacts—goal trees, fired rules, and “why-not” rationales—serve 

both usability and trust. Unlike opaque recommenders, rule-based traces let users audit 

how a conclusion was reached and what additional evidence could flip the outcome. This 

aligns with explainability best practices and is particularly important for safety-adjacent 
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recommendations (e.g., electrical checks). The symptom capture flow balances guidance 

with autonomy: plain-language labels are paired with concise technical cues 

(measurement ranges, operating conditions), assisting non-experts without 

oversimplifying for technicians. Accessibility considerations (keyboard navigation, screen-

reader roles, contrast) increase reach, while bilingual labels help bridge terminology gaps 

between English-language documentation and local workshop parlance—an issue noted 

in national vs. international literature synthesis [16]. Collectively, these choices support 

informed decision-making rather than rote button-clicking. 

 

Persisting cases and rule edits in a versioned datastore enables continuous improvement, 

but it also raises governance questions. Curation workflows should include change 

proposals, peer review, and rollback capabilities to prevent degradation from erroneous 

edits. To manage drift as new e-bike models and components arrive, scheduled audits 

can compare rule coverage against service bulletins and prevalent support tickets. On 

privacy, the architecture segregates personally identifiable information from diagnostic 

content, enforces transport encryption, and provides user-controlled deletion—practices 

consistent with minimizing data exposure while preserving the ability to reproduce 

explanations. Ethically, the system must avoid overconfidence: language in the UI should 

communicate that recommendations are decision support, not guarantees, and should 

flag cases where professional inspection is advisable (e.g., signs of thermal damage). 

Finally, inclusive design suggests monitoring for differential performance across user 

groups (novices vs. technicians) and adapting prompts and flows accordingly. 

 

For workshops, the platform can function as a triage and training tool: novices can follow 

prompted checks while experts use it to document rationale and share institutional 

knowledge. Integration with inventory systems would let rule outputs trigger parts 

availability checks, shortening repair cycles. For manufacturers and distributors, 

anonymized aggregate analytics (e.g., co-occurrence of symptoms, seasonal failure spikes) 

could inform design improvements and warranty policies—provided that data collection 

is transparent and consent-based. In consumer scenarios, a lightweight mode that 

supports “quick checks” (battery connectors, basic continuity tests) could reduce 

unnecessary service visits while still escalating risky conditions. Over time, connecting 

the rule base to telemetry from smart controllers or battery management systems could 
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shift some inputs from self-report to measured signals, improving consistency and 

enabling proactive fault detection. 

 

Three limitations suggest immediate avenues for expansion. First, the current knowledge 

base, while broader than prior art, remains finite; introducing semi-automated knowledge 

acquisition (e.g., rule candidates mined from labeled cases) could accelerate coverage 

growth while keeping human review in the loop. Second, uncertainty handling is rule-

centric; augmenting the engine with probabilistic layers (Bayesian updating or Dempster–

Shafer for conflicting evidence) would allow more nuanced confidence estimates, 

particularly under sparse or noisy symptom sets. Third, evaluation to date emphasizes 

functional correctness; future studies should include prospective field trials with 

technician ground truth, time-to-diagnosis metrics, and user-perceived workload (e.g., 

SUS or NASA-TLX) to quantify human-factors benefits. Additional priorities include 

multilingual term alignment, mobile-first optimization for constrained network 

environments, and APIs for interoperability with service management and parts catalog 

systems. 

 

Although tailored to e-bikes, the methodology—domain-specific ontology, transparent 

rules, hybrid user interaction (symptom-driven and hypothesis-driven), and web-based 

delivery—transfers to adjacent small-EV platforms (e-scooters, e-mopeds) and other 

consumer mechatronic products where fault identification relies on a mix of observable 

symptoms and simple measurements. The key to portability is disciplined separation 

between core inference logic and domain knowledge; by keeping rules declarative and 

data schemas explicit, new domains can be onboarded with limited engineering effort 

while retaining the explainability and governance features emphasized here. 

 

4. CONCLUSION 

 

This study advances diagnostic support for electric bicycles by formalizing a web-based, 

backward-chaining expert system grounded in an extensible, domain-specific knowledge 

base and an interface that accommodates both symptom-driven and hypothesis-driven 

workflows. By coupling transparent rule traces with versioned knowledge governance 

and privacy-aware data handling, the platform delivers explainable, auditable outcomes 

suitable for service operations and after-sales support while creating a sustainable 
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pathway for continuous improvement. Although black-box validation establishes 

functional conformance, rigorous field evaluations remain necessary to quantify 

diagnostic accuracy, time-to-decision, and user burden across stakeholder groups. Future 

enhancements should incorporate principled uncertainty handling, multilingual term 

harmonization, mobile-first optimizations for resource-constrained settings, and 

integrations with telemetry and parts inventory systems. Collectively, these steps will 

strengthen external validity, support responsible scaling, and position the system as a 

durable foundation for decision support across adjacent small-EV domains. 
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