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Abstract. The inadvertent ignition of flammable vapors by radio 

frequency (RF) radiation poses a significant safety risk in mega gas 

stations, necessitating the development of an intelligent predictive 

model for hazard prevention. This study proposes Artificial Neural 

Networks (ANN) Model to classify and predict ignition risks based on 

structured datasets obtained from smart sensing devices. The model 

formulation is based on the perceptron architecture, incorporating 

threshold logic units (TLUs) and multi-layer perceptron’s (MLPs) with 

backpropagation learning for enhanced predictive accuracy. The 

dataset, preprocessed to remove noise and redundancy, was divided 

into an 80:20 training-to-testing ratio and evaluated using cross-

validation techniques. The experimental results show that the ANN-

based model achieved an accuracy of 86%, demonstrating its 

effectiveness in identifying the impact of hazardous conditions. 

These findings underscore the robustness of the proposed approach, 

offering a reliable solution for mitigating ignition hazards in 

industrial environments. This research contributes to advancing 

safety protocols by leveraging on machine learning for predictive 

hazard assessment in flammable vapor-prone areas. 

 

Keywords: Artificial Neural Networks, Radio Frequency Radiation, 

Flammable Vapors, Perceptron, Machine Learning, Hazard Prediction, 

Safety in Mega Stations. 

 

 



Vol. 2, No. 1, March 2025 

 

 

 

63 | Artificial Neural Network for Investigating the Impact of EMF on Ignition ….. 

1. INTRODUCTION 

 

With the rapid advancement of technology in modern society, electromagnetic radiation 

has become increasingly prevalent across various environments—including the 

automotive industry. Numerous vehicle components now rely on electrical energy, and 

as they transmit electricity through cables and circuits, they naturally emit 

electromagnetic fields (EMFs). These fields typically operate within frequencies ranging 

from a few hertz (Hz) to several kilohertz (kHz). This increasing exposure has led to a 

surge in studies examining the effects of electromagnetic frequency (EMF) on both living 

organisms and their surroundings. 

 

According to Garaj-Vrhovac et al. [2], Koylu [3], and Lai et al. [4], there are potential positive 

effects of EMF on biological systems. Conversely, other researchers such as Schüz J. et 

al. [5], Hook et al. [6], and Lagroye [7] have outlined various negative bioeffects resulting 

from EMF exposure. Humans are continuously exposed to EMFs from electric 

transmission lines, telecommunication infrastructures, broadcasting antennas, and 

satellite communication systems. These sources contribute to the unavoidable presence 

of electromagnetic radiation (EMR) in our environment. Radio frequency (RF), a major 

component of EMR, typically ranges from 3 kHz to 300 GHz and can be categorized by 

its frequency and wavelength as described by Umoren et al. [1]. 

 

Typical RF sources include medium and long-wave radios, maritime communication 

systems, radar systems, wireless networks, amateur radios, FM/VHF/UHF broadcasts, 

mobile phones, commercial and military transmitters, satellite transmissions, and 

television stations. Importantly, full electric vehicles, hybrid cars, and electric trains are 

known to generate stronger EMFs than traditional fuel-powered vehicles [8], [9]. RF 

radiation can cause metal components to behave like antennas, generating high currents 

and voltages. This phenomenon can lead to sparking, especially around volatile chemical 

vapors, which introduces a significant safety hazard. 

 

The introduction of EM flows into electrical detonators can also trigger unintended 

pyrotechnic ignition. This raises critical concerns about the long-term effects of ELF-EMF 

and RF-EMF exposure—not just on human health [26] but also on flammable vapor 

ignition. Notably, brain cells are especially sensitive to ELF fields emitted by mobile 
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phones due to their proximity to the user’s head and the associated specific absorption 

rate (SAR) [10]. 

 

As mobile broadband networks (MBBN) expand rapidly, they present both opportunities 

and risks for the telecommunications sector. Mobile broadband efficiency measures both 

qualitative and quantitative aspects of network performance, based on active connection 

assessments [11]. However, transmitters used in radar, radio, and television systems emit 

enough electromagnetic energy to induce voltages and currents in conductive 

materials—such as tanker vessels, pipelines, vent stacks, and metal structures in gas 

stations. 

 

Despite the vast research on radiation control, no comprehensive study currently exists 

to assess RF-induced ignition of flammable vapors specifically in gas stations. This 

highlights the need for a targeted investigation. Understanding the ignition potential 

from RF radiation in mega stations is vital for improving risk prediction and safety 

evaluation. For instance, an experiment by Choi [14] tested the effect of EM radiation on 

a metallic loop within a shielded room. When exposed to a radio transmitter, the highest 

voltage was recorded at a transmission frequency of 61 MHz. 

 

Further interest in RF-induced ignition is evident in studies such as those by Eckhoff R. 

K. and Thomassen [15], who examined ignition risks in offshore plants. They found that 

any device emitting high-frequency energy (10 Hz to 10 GHz) could potentially act as an 

ignition source under the right conditions—particularly when nearby structures serve as 

receiving antennas. Their findings emphasize the need for safety protocols informed by 

such risks. Based on BS 6656:2002 standards, Bradby [16] conducted several practical risk 

assessments, while other studies [17] have adopted a sequential risk evaluation approach 

guided by the same code. 

 

Radio frequency radiation can ignite flammable substances through two main 

mechanisms: High-Frequency Dielectric Heating (HFDEH), which involves direct thermal 

energy, and Antenna Coupling, which leads to indirect conduction [21]. Existing work [22] 

has shown that RF radiation can detonate explosives directly or activate electro-

explosive devices (EEDs) through such indirect means. However, the specific interactions 
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between RF radiation and flammable gases remain poorly understood and under-

researched. 

 

In Nigeria, regulations governing the siting and operation of petrol and gas stations are 

administered by the Nigerian Upstream Petroleum Regulatory Commission (NUPRC) [23]. 

These standards address fire safety, underground storage, wastewater treatment, and 

licensing, but critically lack provisions for RF-related ignition risks in hazardous 

environments. This regulatory gap leaves mega stations particularly vulnerable to 

electromagnetic-induced fire hazards. 

 

This study, therefore, proposes the development of an Artificial Neural Network (ANN) 

model to assess the impact of electromagnetic radiation on the ignition of flammable 

vapors in mega gas stations across Nigeria’s Niger Delta region. Artificial intelligence (AI) 

and machine learning (ML) methods enable systems to learn and improve through data 

analysis [12]. ML has proven effective in identifying hidden data patterns that traditional 

analysis cannot detect [25], allowing algorithms to refine insights iteratively [13]. 

 

The objective of this study is to investigate the role of various factors in unintentional 

ignition within mega stations. These factors include the strength of the RF signal, the 

energy contained in the radiation, the function of nearby structures as antennas, 

absorption rates, ignition pathways, and the presence of combustible gases. By analyzing 

these parameters, this research seeks to highlight their significance in contributing to 

RF-induced ignition risks in hazardous environments. 

 

2. METHODS 

 

The schematic in Figure 1 illustrates the methodological framework adopted in this study. 

This framework underpins the development of a predictive model aimed at preventing 

the inadvertent ignition of flammable vapors in mega gas stations caused by radio 

frequency (RF) radiation. 
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2.1. Model Formulation Using Artificial Neural Network (ANN) 

To analyze the potential risk of radio frequency-induced ignition of flammable vapors in 

mega gas stations, this study employed an Artificial Neural Network (ANN) as the 

foundational computational model. The ANN was chosen for its ability to recognize 

complex, nonlinear patterns in data—capabilities that traditional linear models often fail 

to capture in dynamic, safety-critical environments. 

Figure 1. Hybrid Framework for Ignition of Flammable Vapours in Mega Station by RF 

Radiation 

 

The starting point in ANN design is often the Perceptron, a pioneering neural architecture 

that mimics the basic decision-making structure of biological neurons. Central to the 

perceptron is the Threshold Logic Unit (TLU)—also referred to as the Linear Threshold 

Unit (LTU)—which serves as the computational engine of each artificial neuron. As Geron 
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A. [18] explains, a TLU processes a set of input signals by computing their weighted sum, 

comparing this sum to a threshold, and producing a corresponding output signal. 

Mathematically, the TLU's operation can be represented as shown in Equation 1. 

 

z=w1x1+w2x2+…+wnxn=xTw   (1) 

 

This equation simply means that each input xi is multiplied by a corresponding weight wi, 

and the resulting products are summed to form a value z. This value represents the 

neuron's internal state or activation potential. Once this value z is calculated, it is passed 

through a step function, which acts as a decision gate: 

 

hw(x)=step(z)      (2)  

Where: 

z=xTw      (3)  

 

This function outputs a binary decision: either the neuron "fires" (returns 1) if the input 

exceeds the threshold, or it stays inactive (returns 0). This simple decision-making model 

allows the perceptron to act as a linear binary classifier, distinguishing between two 

classes based on input features. 

 

 
Figure 2. Threshold Logic Unit 

 

In real-world applications—especially those involving multi-class outputs or complex 

feature patterns—a single TLU isn’t sufficient. Therefore, a network of such units, known 

as a multi-layer perceptron, is employed. The basic perceptron architecture includes an 

input layer that receives the data, an output layer that returns the final classification, 

and may include one or more hidden layers for deeper learning. All neurons in a layer are 

typically fully connected to the neurons in adjacent layers. 
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This interconnection is clearly illustrated in Figure 3, which shows a perceptron with two 

input neurons and three output neurons. Such an arrangement enables the model to 

classify input data into three distinct categories simultaneously, making it a multi-output 

classifier. To mathematically model these layers and their interconnections, the following 

equation is used: 

hwb(X)=ϕ(XW+b)    (4)  

Where: 

a) X is the input feature matrix, with each row representing an instance and each 

column a feature. 

b) W is the weight matrix, containing all weights connecting input neurons to the 

next layer. 

c) b is the bias vector, allowing the model to shift the activation function for 

improved flexibility. 

d) ϕ represents the activation function, which could be a step function, sigmoid, or 

other non-linear functions depending on the desired complexity. 

 

Learning in a perceptron occurs through weight adjustment based on prediction errors. 

When the output does not match the expected result, the weights are updated to reduce 

this error using the Perceptron Learning Rule: 

 

wij
next step=wij+η #yj-yi$% xi	   (5)  

Where: 

𝑤"# is there a weight between and the 𝑖$% input neuron and the 𝑗$% output neuron 

𝑥" is the 𝑖$% input for the currently running training instance. 

𝑦+" is the output of the 𝑗$% for the current training example's output neuron. 

𝑦" is the intended result of the 𝑗$% for the current training example's output neuron. 

𝜂 is the velocity of learning. 

 

This iterative process of forward computation and backward error correction enables 

the perceptron to “learn” from data. Although the single-layer perceptron is limited to 

linearly separable problems, it lays the groundwork for more advanced neural networks—

capable of tackling non-linear, high-dimensional data, such as that encountered in 

assessing ignition risks in electromagnetic environments. 
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Figure 3. Perceptron Architecture Diagram 

 

2.2. Multi-Layer Perceptron and Backpropagation 

The single-layer perceptron modeling mathematical framework can be expanded to 

include multiple layers. A multi-layer perceptron (MLP), depicted in figure 4, consists of 

one (pass through) input layer, a number of levels of TLUs known as hidden layers, and 

one final layer of TLUs known as the output layer. Higher levels are closer to their 

respective outputs, whereas lower layers are closer to the input layer. Every layer, 

excluding the output layer, contains a bias neuron that is fully connected to the layer 

above it. Higher levels are closer to the outputs, whereas lower layers are closest to the 

input layer. Every layer, excluding the result layer, contains a bias neuron that is fully 

connected to the layer below it. 

Figure 4.  Multi-Layer Perceptron and Backpropagation 

 

The perceptron with multiple layers uses the backpropagation learning method. It merely 

uses gradient descent as a foundation. This approach employs an effective method for 

continuously generating the gradients: the backpropagation algorithm can calculate the 



Vol. 2, No. 1, March 2025 

 

 

 

Imeh Umoren, Saviour Inyang, at all | 70 

gradient of the system's error with respect to each individual model component in a 

couple of runs through the network (one forward and one backward). In other words, it 

can determine whether every connection weight and bias term needs to be modified in 

order to lower inaccuracy. When the network gets these gradients, it just goes through 

a typical Gradient Descent step and repeats every step unless it merges to the final 

result. Below are detailed all of the specifics of the artificial neural network that was 

employed in this research: 

a) It processes the entire training set many times, handling one mini-batch at a 

time (for instance, having 50 examples each). Epochs are each individual 

passes. 

b) As a result, each mini-batch is transmitted through the network's input layer, 

which just sends it on to the top hidden layer. The program then calculates 

the output for each neuron in this layer (for every single instance in the mini-

batch). 

c) The outcome is passed on to the following layer, which calculates its output 

and does the same, and so on, before we approach the output of the last 

layer, which is the output layer. The forward pass is just like generating 

predictions, with the exception that all possible intermediate results are 

retained because they are necessary for the opposite pass. 

d) The method then calculates the output error of the network (i.e., it compared 

the system's actual output to its planned output using a loss function and 

produces a measure of the error). 

e) The error contribution of each output link is then calculated. The chain rule 

is used analytically to achieve this; it speeds up and improves the process. 

f) After that, when the procedure hits the input layer, the program employs the 

chain rule to ascertain what percentage of these mistake contributions 

occurred from every interaction in the layer below. This backwards pass 

efficiently examines the error gradient over every one of the linking weights 

in the network by transmitting the error gradient backward through the 

network. 

g) Applying the error gradient, it just calculated, the procedure then completes 

a Gradient Descent phase to adjust all of the link weights in the network. 
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2.3 Model Training and Testing 

In the realm of machine learning, the training dataset is the foundational input used to 

"teach" the model how to perform specific tasks. This dataset serves as the source of 

knowledge from which the model learns, evolves, and adapts through iterative 

processing. By leveraging various algorithms and Application Programming Interfaces 

(APIs), the machine continuously improves its ability to identify patterns, make 

predictions, and perform intelligent decision-making—all without being explicitly 

programmed for each individual task. 

 

In essence, machine learning involves constructing algorithms that can interpret large 

datasets and transform them into actionable insights. These algorithms generate 

predictions or inferences by developing mathematical representations of the data they 

ingest. The quality of these inferences heavily depends on the quality of the training 

data, which must be clean, relevant, and diverse. 

 

For the purpose of this study, the training dataset was generated from real-world 

statistical field data, collected in accordance with safety and engineering standards. Prior 

to training, the dataset underwent rigorous pre-processing to eliminate noise, 

redundancies, and inconsistent values, following the guidance of PD CLC/TR 50427:2004 

[19]. This crucial step ensured that the model received high-quality inputs that would 

enable effective and accurate learning. 

 

The dataset was then partitioned using the widely adopted 80:20 split method—allocating 

80% of the data for training purposes and reserving the remaining 20% for testing. The 

testing dataset, often referred to as an "unseen dataset," is essential for assessing the 

generalizability, reliability, and precision of the model in real-world applications. 

Additionally, during the training phase, 20% of the training dataset was set aside as 

validation data to fine-tune the model's parameters and prevent overfitting. To further 

enhance the model's robustness and ensure statistical soundness, the study employed a 

five-fold cross-validation strategy. Under this approach: 

a) The entire dataset was divided into five equal subsets, known as "folds." 

b) In each iteration, four folds were used to train the model, while the fifth fold 

served as the test set. 
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c) This process was repeated five times, ensuring that each fold was used exactly 

once as a test set. 

d) After completing all iterations, performance metrics such as accuracy, precision, 

recall, and F1-score were computed to evaluate model consistency and 

effectiveness across various data partitions [20]. 

 

This comprehensive training and validation protocol provided a well-rounded evaluation 

of the ANN model’s ability to generalize across different scenarios and datasets—an 

essential requirement when dealing with high-risk environments like mega gas stations 

where the margin for error is minimal. Figure 5 provides a representative cross-section 

of the training dataset utilized in this study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cross Section of the training dataset 

 

3. RESULTS AND DISCUSSION 

 

3.1. Performance Evaluation 

To evaluate the feasibility of using machine learning for hazard prediction, this study 

implemented an Artificial Neural Network (ANN) to classify and forecast the risk of 

unintended ignition of flammable vapors caused by radio frequency (RF) radiation. The 

ANN model was trained on a high-quality, structured dataset acquired from a purpose-

built smart device designed specifically for this research. This device collected relevant 

environmental and electromagnetic parameters across various operational conditions in 

mega gas stations. To validate the model's performance and reliability, standard 
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classification evaluation metrics were adopted. The key objective was to determine 

whether the ANN could accurately identify the presence—or absence—of ignition risks 

within hazardous environments, thereby enabling proactive mitigation strategies. 

 

One of the primary evaluation tools employed was the confusion matrix, which provides 

a detailed breakdown of the model's binary classification outcomes. The matrix 

categorizes predictions into true positives, false positives, true negatives, and false 

negatives, offering a transparent view of the model's predictive behavior. In this matrix, 

actual outcomes are listed along the rows, while predicted outcomes are displayed along 

the columns—enabling a direct comparison between ground truth and model output. 

 

In addition to the confusion matrix, the study leveraged the Receiver Operating 

Characteristic (ROC) curve, a widely accepted graphical method for evaluating the 

performance of binary classifiers. The ROC curve plots the true positive rate (recall) 

against the false positive rate, effectively visualizing the trade-off between sensitivity 

and specificity. A model with a curve that rises sharply toward the top-left corner is 

considered highly effective. The false positive rate represents the proportion of actual 

negatives that were incorrectly classified as positives, and is equivalent to 1−specificity1 

- \text{specificity}1−specificity. Therefore, the ROC curve is often interpreted as a plot of 

sensitivity vs. 1−specificity, giving a comprehensive view of the classifier's robustness 

under various thresholds. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Varied Parameters vs. Power Absorption 
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To explore how each variable in the dataset correlates with ignition risk, all input features 

were pairwise-plotted against the power absorption variable—a key indicator of RF 

intensity. This analysis, visualized in Figure 6, reveals potential nonlinear interactions and 

offers insight into which variables have the most significant influence on power 

dynamics and potential ignition thresholds. 

 

A central metric during training is the loss function, which quantifies the gap between 

the predicted and actual outputs. Unlike accuracy, which simply measures correct 

predictions, the loss value aggregates all the errors across training or validation 

instances. It guides the training algorithm by providing gradients used for updating neural 

weights in the direction of lower error. The total loss across all samples is referred to as 

the cost, and minimizing this cost is a fundamental goal in optimizing neural networks. 

Figure 7. Loss vs. Accuracy Over Training Epochs 

 

As shown in Figure 7, the model's loss consistently declines over successive training 

epochs, indicating a well-functioning learning process. Notably, both training loss and 

accuracy improved significantly by the 30th epoch, with loss stabilizing in a downward 
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trend regardless of the learning method employed. Moreover, Figure 8 illustrates the 

training and validation performance curves, providing deeper insight into model 

convergence. The training data shows consistent improvement in accuracy and reduction 

in loss across the epochs. The validation set, while demonstrating resilience, plateaued 

around epoch 30—suggesting potential limitations in generalization despite effective 

training. This behavior underscores the importance of further enhancements in data 

representation, diversity, and network architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Training and Validation Accuracy vs. Epochs 

 

The concept of epochs is crucial in understanding training dynamics. Each epoch 

represents a full pass through the training dataset. For large datasets, data is often 

broken into smaller batches, and a pass of one batch is known as an iteration. If the batch 

size equals the entire dataset, then one epoch equals one iteration. The model in this 

study was trained for 30 epochs, with accuracy and loss recorded at each epoch to track 

learning progress. 

 

A detailed breakdown of training progress is shown in Table 1, which records model 

performance metrics across all 30 epochs. From the first epoch, the training accuracy 
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remained stable at 86.25%, while the validation accuracy plateaued at 71.43%, reflecting 

a consistent training phase but highlighting the need for generalization improvements. 

 

Table 1. Training Iteration Results Over 30 Epochs 

Epoch ETA Loss Accuracy Step Time Val Loss Val Accuracy 

1 0s 0.4188 0.8625 58ms/step 0.6188 0.7143 

5 0s 0.4017 0.8625 25ms/step 0.6126 0.7143 

10 0s 0.3850 0.8625 29ms/step 0.6076 0.7143 

15 0s 0.3728 0.8625 28ms/step 0.6057 0.7143 

20 0s 0.3633 0.8625 26ms/step 0.6047 0.7143 

25 0s 0.3556 0.8625 26ms/step 0.6039 0.7143 

30 0s 0.3490 0.8625 26ms/step 0.6039 0.7143 

 

 
Figure 9. Training and Validation Loss Over Epochs 

 

As visualized in Figure 9, both training and validation losses steadily decreased 

throughout the 30 epochs. This indicates that the model learned effectively and avoided 

major overfitting issues, as evidenced by the relatively narrow gap between the two loss 

curves. However, the static validation accuracy (71.43%) suggests limited generalization 

capability. This may be due to several factors such as: 
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a) Inadequate training data volume or diversity, 

b) Overfitting to the training dataset, 

c) Suboptimal learning rates, 

d) Model reaching a local minimum, 

e) Or lack of regularization techniques. 

 

The step time per epoch, initially variable, stabilized as the model adapted—

demonstrating increased computational efficiency with each pass through the dataset. 

In conclusion, while the ANN model demonstrates high training accuracy and efficient 

learning behaviour, its generalization remains a challenge. Future research should explore 

enhancements like data augmentation, architecture refinement, hyperparameter tuning, 

and regularization strategies to improve real-world prediction performance in complex, 

high-risk environments such as mega gas stations. 

 

3.2. Discussion 

This section critically analyzes and synthesizes the outcomes of the Artificial Neural 

Network (ANN) model developed to predict the risk of flammable vapor ignition triggered 

by radio frequency (RF) radiation in mega gas stations. Through an in-depth examination 

of performance metrics—including accuracy trends, loss curves, the Receiver Operating 

Characteristic (ROC) curve, and confusion matrix—the discussion provides a holistic 

understanding of the model’s strengths, limitations, and potential for real-world 

deployment. 

 

From a performance standpoint, the ANN displayed robust learning capabilities. As shown 

in Figures 7 and 9, the training and validation loss steadily decreased over 30 epochs, 

indicating successful optimization of the model’s internal parameters. This continuous 

reduction in error signals that the model effectively captured and internalized patterns 

present in the training data. The high training accuracy of 86.25% further supports the 

claim that the ANN was able to learn meaningful relationships between features 

associated with ignition risk scenarios. 

 

However, a closer inspection reveals limitations in the model’s generalization capacity. 

The validation accuracy, which plateaued at 71.43%, did not mirror the improvements seen 

in training accuracy. This performance gap suggests that the model, while fitting well to 
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the training data, struggled to extrapolate its predictions effectively to new, unseen data. 

Such a disparity is often a sign of overfitting or insufficient data variability. It may also 

indicate that the current ANN architecture lacks the complexity or adaptability required 

to generalize across diverse operational conditions typical of real-world mega gas 

stations. 

 

Supporting this interpretation, the confusion matrix and ROC curve further highlight the 

challenges in classification accuracy. While the model achieved a commendable true 

positive rate, the presence of false negatives—cases where ignition risk was not detected 

despite its presence—raises serious concerns in safety-critical environments. False 

positives are also problematic, though less catastrophic, as they may lead to unnecessary 

alarms or operational inefficiencies. The ROC curve’s moderate performance underscores 

the need to fine-tune the model for better sensitivity and specificity before it can be 

considered reliable for field application. 

 

In addition to classification analysis, an exploratory examination was conducted to 

understand the interaction between various input features and power absorption—a 

proxy indicator for RF radiation intensity. As illustrated in Figure 6, pairwise feature 

comparisons revealed several complex and potentially nonlinear relationships. These 

findings validate the use of an ANN, which, unlike linear models, is inherently capable of 

modeling such intricate dependencies through its multilayered and nonlinear structure. 

 

Despite the encouraging results, several key limitations emerged. First, the dataset—

although meticulously structured and pre-processed—may not encompass the full 

spectrum of operational and environmental conditions encountered in actual mega 

stations. This lack of data diversity limits the model’s ability to generalize across real-

world use cases. Second, the ANN’s current architecture may not possess sufficient depth 

or flexibility to fully capture high-dimensional, contextual variations in ignition risk 

behavior. Lastly, suboptimal hyperparameters—such as fixed learning rates, insufficient 

regularization, or limited batch sizes—could be constraining the model’s ability to evolve 

beyond local minima during training. 

 

Synthesizing these findings, it becomes clear that while the ANN framework is technically 

sound, its practical effectiveness hinges on addressing the noted constraints. 
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Enhancements in data volume and variability, architectural complexity (e.g., deeper 

networks or hybrid models like CNN-LSTM), and refined hyperparameter tuning are 

recommended for future research. Techniques such as dropout, batch normalization, and 

L2 regularization may also help combat overfitting and improve generalization. 

 

Notably, the model’s consistent reduction in training time per epoch demonstrates strong 

computational efficiency. This trait makes the ANN a promising candidate for real-time 

applications in embedded systems, particularly in gas stations where immediate hazard 

detection is critical. However, this potential can only be realized if the model’s predictive 

performance in validation scenarios is improved. 

 

The analysis underscores both the promise and limitations of using ANN models for RF-

induced ignition risk assessment. While the current model shows clear technical 

feasibility and learning efficacy, it falls short in terms of reliable generalization—a key 

requirement for high-risk safety systems. Future iterations must focus on broader data 

collection, architectural advancements, and rigorous tuning to create a model that not 

only learns effectively but also performs reliably in diverse, real-world conditions. With 

such refinements, the model could evolve into a powerful tool for proactive hazard 

prevention in flammable environments. 

 

4. CONCLUSION 

 

Radio Frequency (RF) fields are recognized ignition sources for combustible gases and 

vapors, capable of triggering electro-explosive devices and causing sparks up to 30 

kilometers from the source. In environments like mega gas stations—where RF 

transmitters and industrial machinery are prevalent—this poses significant safety risks. 

This study developed an Artificial Neural Network (ANN) model to predict the risk of RF-

induced ignition using a structured dataset collected over three months. Leveraging 

perceptron-based architectures, including TLUs and MLPs with backpropagation, the 

model achieved 86% accuracy in classifying ignition hazards. These results demonstrate 

the potential of machine learning in enhancing industrial safety through proactive risk 

assessment. Future work should aim to optimize the model, expand the dataset, integrate 

real-time monitoring, and validate the system in operational settings to strengthen 

hazard mitigation efforts. 
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